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a b s t r a c t

Digital low pass filters are routinely used to improve the signal-to-noise ratio of NMR signals, e.g. FID or
echoes, when pass band widths of the available analogue filters do not correspond to the spectral width
of the signals. Applying digital filters will always necessitate an oversampling of the signal to filter.

The digital filters with which the commercial spectrometers are nowadays equipped and most of those
known to date from literature were designed to be applied to signals in the time domain. Nevertheless,
most of them are aimed at optimising the filtering of signals in the frequency domain and tend to distort
them in the time domain, especially when applied to truncated signals.

Herein we propose a low pass filter that preserves all the features of the signal in both domains. The
method consists in fitting raw NMR data with a finite sum of truncated cardinal sine functions and
requires nothing but the signal being a band-limited function. We devised sensible and, in practice,
hardly restrictive rules for setting parameters of the filter and applied it to various computer-simulated
and experimentally measured truncated data sets to demonstrate its success in filtering both FID and
echo signals.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

An NMR-signal is inevitably corrupted with electronic noise, an
intrinsic characteristic of the electronic circuits of any NMR-spec-
trometer or -tomographer. Extra noise may result from interac-
tions between the NMR-tomographer and bulky conductive
samples, e.g. in medical MRI. Nowadays, with higher-field super-
conducting magnets and low temperature units becoming avail-
able, the signal-to-noise ratio can be, as stated by the Curie law,
most often improved by working at higher static magnetic fields
or cooling the sample to increase the signal itself. Moreover, cryo-
genically cooled probes can be used to lower noise due to thermal
fluctuations in RF coils. Nevertheless, there are situations in which
it turns out more advantageous or even necessary to work at lower
magnetic fields or higher temperatures. This includes coherence
transfer via weak scalar couplings and measurements of dipolar
relaxation rates [1] in presence of high chemical shift anisotropy
(CSA) in liquids, gradient NMR and NMR-imaging of intrinsically
inhomogeneous systems such as concretes [2,3] or foams [4], as
well as certain relaxometry studies [5]. Furthermore, there are
NMR hardware peculiar to in situ studies, e.g. GARField [6] and
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the NMR MOUSE [7], whose constant and radio frequency mag-
netic field sources as well as receiver are externalised. This leads
to higher field inhomogeneity and lower sensitivity than can usu-
ally be achieved at the conventional spectrometers. In such situa-
tions, measured signals will necessarily have to be filtered.

To process a signal with a digital filter, it must first be passed
trough an analogue filter and then digitised by analogue-to-digital
converters (ADC). The sampling frequency must be set larger than
the pass band width of the analogue filter to avoid that high fre-
quency noise folds on to the spectrum of the signal when it is dig-
itised. As any NMR spectrometer has only a limited number of
analogue filters, satisfying this condition often amounts to auto-
matic setting the sampling frequency up to several orders of mag-
nitude higher than that set by the spectroscopist to accurately
record all the harmonics in the spectrum only, were the signal
noise-free.

In one-dimensional and the direct dimension of multi-dimen-
sional experiments, the signal can also be deliberately oversam-
pled since this can, as will later transpire, be used for further
signal-to-noise improvement. The oversampling, though useful
and often necessary, results in a tremendous increase in the size
of data to process with the digital filter.

There are numerous NMR experiments, e.g. CPMG and PGSE, in
which information about physically or chemically relevant quanti-
ties are extracted direct from signals in the time domain. Filtering
them from high frequency noise will improve the signal-to-noise
ratio at those moments where the values of the signal are of inter-
est, echoes maxima or beginnings of FID-signals and thus increase
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the precision with which the physical quantities will be deter-
mined. On the other hand, in spectroscopic and imaging experi-
ments, in which signals measured as a function of time are
meant to be Fourier-transformed, digital filtering will solely con-
tribute to minimising [8] the volume of data without loss of
information.

Three approaches [9] have so far been widely taken to damp
high frequency noise. The first consists in processing and down-
sampling oversampled signals with one of in-built digital filters
of the spectrometer software at the very moment as they are being
measured and digitised. The output data of such filters is a signal
freed of high frequency noise, digitised at the frequency that corre-
sponds to its spectral width. The spectrometers are equipped with
causal, finite (FIR) and infinite (IIR) impulse response filters. The
FIR filter calculate each output sample as a linear combination of
those samples that have already been to that point digitised by
the ADC of the spectrometer. Each output sample of the IIR filter
is a linear combination of both the samples that have been digi-
tised by the ADC and those previously supplied by the filter itself.
Here decimation by a factor N is achieved simply by retaining only
one of N samples.

Another approach, known as low pass convolution filter, con-
sists in acquiring an entire data set and then convoluting it in
the time domain with an appropriate band-limited function. Con-
volution filters are mathematically similar to, though, significantly
better than causal filters, as acquisition and filtering now take
place sequentially, providing greater freedom in choosing the
kernel.

Applying either type of filter to an FID signal will result in dis-
tortions, as in their algorithms, signals are supposed to be contin-
uous functions of time, equal to zero at the boundaries of the
acquisition interval. The non-zero value of the FID signal at t = 0
is erroneously interpreted by the filters as a discontinuity of the
signal or, alternatively, spurious high frequency harmonics. The fil-
ters will eliminate them and thus distort several first samples of
the signal in the time domain. Moreover, operating in real time,
those filters will tend to dephase various signal harmonics and
thus artificially postpone the beginning of signals by a so-called
group delay in the time domain. All this will result in dephased
spectra with distorted base-line or faulty images. Contrariwise,
convolution filters with certain, rather sophisticated [10,11], ker-
nels do give well phased spectra at the expense of signal-to-noise
ratio. Extra noise, though, will appear outside the spectrum, which
makes convolution filters perfectly suitable for spectroscopic
experiments. On the other hand, they still fail utterly in the time
domain when applied to truncated signals (see below).

The third approach consists in filtering and possibly restoring
missing parts of the time-dependent signal by fitting it with model
functions [9]. However, the choice of those functions may depend
on the type of experiments and will require certain prior knowl-
edge of the system under study. In particular, various linear predic-
tion (LP) methods [12–14] proved successful in both improving
spectral resolution, which in theory can always be turned into in-
crease in signal-to-noise ratio, and alleviating phase and amplitude
distortions due to, respectively, delayed start of acquisition and
truncation of the signal. Nevertheless, those methods rely on the
assumption that the spectral lines are Lorentzian or Gaussian and
thus are not applicable to many physically relevant systems, e.g.
those in which transverse magnetisation is known to decay non
exponentially [15].

This paper reports on a low pass filter that we have designed to
process truncated oversampled NMR signals in the time domain.
The method consists in fitting raw experimental data with a series
of cardinal sine functions and requires nothing but the signal to be
a band-limited function. Such expression thoroughly allows for
that part of the original noise-impaired signal whose spectrum fits
into the cardinal series band width, while the rest of the signal will
be largely overlooked. The band width of the series can be set to
just over that of the signal by an appropriate choice of cardinal sine
functions, thus making of it an excellent low pass filter for NMR
signals.

The paper is structured as follows: We first remind some basic
properties of the band-limited functions and convolution low pass
filters and emphasise limits of the former for processing truncated
data sets. Second, we introduce a low pass filter based on the use of
cardinal series. Third, we derive sensible rules for setting parame-
ters of the filter by numerically optimising them for two computer-
simulated noise-free data sets. Forth, we examine tolerance of our
filter towards signal truncations by filtering various experimental
and computer-simulated signals and compare it with that of a con-
volution filter with Lanczos kernel. Finally, we examine perfor-
mance of our method by applying it to data sets collected in
CPMG experiments.

2. Theory

2.1. Properties of band-limited functions

If a continuous time–function x(t) is band-limited in the low
pass sense with a bandwidth Xo, i.e.Z 1

�1
xðtÞe�ixtdt ¼ 0 for jxj > Xo

2
ð1Þ

then, according to the sampling theorem [16,17], it can be ex-
pressed with no loss of information as an infinite cardinal series

xðtÞ ¼
X1

m¼�1
xmsinc

X
2
ðt � smÞ ð2Þ

where sinc stands for the cardinal sine function (see also Fig. 1A)

sinc a ¼ sina
a

; ð3Þ

time t is arbitrary (�1 < t <1), coefficients xm = x(sm) are discrete
samples of the function at a countable yet infinite number of mo-
ments sm = 2pm/X and the sampling frequency X fulfils the Nyquist
criterion [18], i.e. it must not be less than the function band width
Xo

X ¼ 2p
smþ1 � sm

P Xo ð4Þ

The band width Xo was defined here so that Xo/2p corresponds to
the sweep width in Hertz (SWH) in the customary usage of NMR
spectroscopists. The reader is referred to Table 1 for a list of all fre-
quency parameters.

In the most general case the series in Eq. (2) is mathematically
proved [19] to exhibit only a mean square convergence, though, in
practice it most often converges uniformly. Furthermore, Eq. (2) re-
duces into an identity when t = sm, which implies that the series
will pass through all the samples.

Quite clearly, samples xm become interdependent, when the
function x(t) is over-sampled, i.e. X > Xo, and given the assumed
band-limited character of the function, Eq. (2) can be generalised
[19] as

xðtÞ ¼ X0

X00
X1

m¼�1
xmsinc

X0

2
ðt � smÞ

where Xo < X0 < 2X00 �Xo and X00 ¼ 2p
smþ1 � sm

ð5Þ

It should be mentioned that the expression of the function x(t) as an
infinite cardinal series is no longer unique when X0 – X00, i.e. there



Fig. 1. (A) Cardinal sine function sinc(t) = sin(pt)/(pt). (B) FT (in arbitrary units) of the cardinal sine function. (C) Lanczos kernel x(t) = sinc(pt)sinc(pt/3). (D) FT (in arbitrary
units) of the Lanczos kernel.

Table 1
List of frequency parameters.

Symbol table

Xo Signal band width
X ADC sampling frequency
X0 Cardinal series band width
X0o Cardinal kernel band width
X00 = 2p/(sm+1 � sm) Where sm mth cardinal sine maximum location
Xf Analogue filter pass band
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is an infinity of sets of coefficients am other than actual samples
xm = x(sm) of the function that would still satisfy Eq. (5).

In practice, NMR-signals are either band-limited or can reason-
ably be viewed as such and are passed first through an analogue fil-
ter with a pass band width Xf (Xf P Xo). They are then sampled at
a frequency X that must be higher than the band width of the ana-
logue filter (X P Xf) to avoid the folding of high frequency noise
on to the signal band width. This usually leads to an oversampling
of the signal, i.e. sampling at a much higher frequency (X�Xo)
than it would be required by the Nyquist criterion to just accu-
rately record all frequency components of the signal. Finally, the
analogue-to-digital converters (ADC) of the spectrometer can out-
put only a finite number of complex regularly spaced noise-im-
paired samples x(tn) + dx(tn) with 1 6 n 6 N, of which one would
most often like to restore an entire and preferably further filtered
signal s(t) with tI 6 t 6 tN. To do so, one can, unless the signal is
truncated, apply to it a convolution filter, whose basic principle
we shall briefly remind in the next section. Otherwise, we propose,
further below, a low pass filter based on using a finite cardinal
series.

2.2. Convolution filter

The convolution low pass filter consists in convoluting a band-
limited signal x(t) of band width Xo impaired with white noise
dx(t) with a likewise band-limited kernel f(t) of bandwidth X0o sub-
ject to Xo 6 X0o.

sðtÞ ¼
Z 1

�1
fxðt0Þ þ dxðt0Þgf ðt � t0Þdt0 ð6Þ

This amounts to the multiplication of the spectrum of the signal by
the Fourier transform (FT) of the kernel

~sðxÞ ¼ 2pf~xðxÞ þ ~dxðxÞg~f ðxÞ ð7Þ

or in more detail

~sðxÞ ¼ 2pf~xðxÞ þ ~dxlðxÞ þ ~dxhðxÞg~f ðxÞ ð8Þ

where dxl(x) and dxh(x) stand for noise at frequencies in intervals
jxj 6Xo/2 and Xo/2 < jxj < Xf/2, respectively. We assumed here
that the signal was sampled in accord with the Nyquist criterion
(Eq. 4) and long enough for it to come to zero by the end of the
acquisition; and thus used an integral with infinite boundaries
rather than a truncated series. Theoretically the ideal type of kernel
is a cardinal sine function
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f ðtÞ ¼ Xo

2p
sinc

Xo

2
t

� �
ð9Þ

whose FT equals one when jxj 6Xo/2 and zero elsewhere (see also
Fig. 1B). Taking such a kernel will simplify Eq. (7) to

~sðxÞ ¼ ~xðxÞ þ ~dxlðxÞ ð10Þ

Thus, the filter with rectangular-shaped spectrum rids raw data of
that part of white noise whose frequencies exceed the band width
of the signal and thus increases the signal-to-noise ratio by a

factor of
r
r0
¼

ffiffiffiffiffiffi
Xf

Xo

s
ð11Þ

where r and r0 are standard deviations of the raw and filtered sig-
nals, respectively, i.e.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjdx2ðtÞji

q
and r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjds2ðtÞji

q
ð12Þ

The factor r/r0 reflects a uniform noise reduction in the time do-
main, whilst in the frequency domain the same, owing to Parseval’s
theorem, factor corresponds to noise alleviation outside the pass
band of the filter. Within this band, noise is left intact by the filter.

2.3. Cardinal series filter

To filter a truncated signal, we propose to fit the N available raw
data samples x(tn) + dx(tn) with a truncated cardinal series

xðtnÞ þ dxðtnÞ �
XMsup

m¼Minf

amsinc
X0

2
ðtn � smÞ for 1 6 n 6 N ð13Þ

Only an infinite cardinal series would give an exact expression for
the noise-free samples x(tn) of the band-limited function x(t). Nev-
ertheless, fast convergence of the series allows, in practice, to limit
it to a reasonable number of members. The number Msup �Minf + 1
of cardinal sine functions to include into the truncated series as well
as their band width X0 and maxima locations sm are constant
parameters to optimise, subject to conditions [19]

Xo 6 X0 ð14Þ

X00 P
X0 þXo

2
; where X00 ¼ 2p

smþ1 � sm
ð15Þ

One then looks for complex coefficients am that achieve the best fit
of the samples. According to Bayesian analysis [20], finding maxi-
mum likelihood values of such coefficients for normally distributed
noise, amounts to minimising

minamðMinf6m6MsupÞ

�
XN

n¼1

xðtnÞ þ dxðtnÞ �
XMsup

m¼Minf

amsinc
X0

2
ðtn � smÞ

������
������

2

ð16Þ

This can be written in a matrix form as

minA ¼ jX �MAj2 ð17Þ

where M is a non-square matrix

M ¼
sinc

X0ðt1�sMinf
Þ

2 . . . sinc
X0 ðt1�sMsup Þ

2

..

. ..
.

sinc
X0ðtN�sMinf

Þ
2 . . . sinc

X0 ðtN�sMsup Þ
2

0
BBB@

1
CCCA ð18Þ

and X and A are column vectors
X ¼

xðt1Þ þ dxðt1Þ
..
.

xðtNÞ þ dxðtNÞ

0
BB@

1
CCA and A ¼

aMinf

..

.

aMsup

0
BB@

1
CCA ð19Þ

Eq. (17) is formally solved by the pseudo-inverse method as

Aopt ¼ ðMtMÞ�1MtX: ð20Þ

To calculate Aopt, we chose to compute the matrix MtM and vec-
tor MtX explicitly, as this, in our opinion, requires less computer
memory than other algorithms [21] when dealing with large data
sets. However, MtM may turn out singular, when the number of
elements in A exceeds that in X, or ill-conditioned. The former hap-
pens when the problem of finding the minimum in Eq. (16) turns
out ill-posed, i.e. there are several distinct sets of coefficients am

that provide an equally good fit of the data samples x(tn) + xd (tn)
with the truncated series of Eq. (13). Computational stability can
nevertheless be restored by Tikhonov regularisation [20,21], which
consists in substituting Eq. (20) by

A0opt ¼ ðM
tM þ kIÞ�1MtX ð21Þ

where k is a small real positive constant and I, an identity matrix.
This amounts to replacing Eq. (17) by

minA ¼ jX �MAj2 þ kjAj2 ð22Þ

and does not noticeably compromise exactitude of the fit in Eq. (13).
Thus found optimum coefficients A0opt can then be used to calcu-

late the complex signal at an arbitrary moment t as

sðtÞ ¼ GtðtÞA0opt ð23Þ

where G is a column vector

GðtÞ ¼

sinc X0

2 ðt � sMinf
Þ

..

.

sinc X0

2 ðt � sMsup Þ

0
BB@

1
CCA ð24Þ

In particular, one may want to calculate s(t) at the same moments
t = tn, (1 6 n 6 N) at which the signal x(t) + dx(t) was originally sam-
pled by the ADC of the spectrometer.

If dx(tn) is white Gaussian noise of standard deviation

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjdx2ðtnÞji

q
for 1 6 n 6 N ð25Þ

that of the Gaussian noise of the signal s(tn) processed as described
above can be expressed as

r0ðtnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjds2ðtnÞji

q
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VtðtnÞVðtnÞ

q
for 1 6 n 6 N ð26Þ

where V stands for a column vector

VðtÞ ¼ MðMtM þ kIÞ�1GðtÞ ð27Þ

Thus, noise reduction r0/r depends only on the parameters of the
cardinal series and sample moments and is independent of the
raw data samples themselves.

This improvement of the signal-to-noise ratio stems from less-
ening noise of frequencies higher than X0/2. As could be expected
from the sampling theorem, the band-limited signal x(t) with the
band width Xo is accurately described by even the finite series of
truncated cardinal sine functions. In theory, the series is itself a
band-limited function with a band width X0. In practice, the FT
of the series determined within [t1,tN] may turn out to have a band
width somewhat larger than X0, owing to this truncation. On the
other hand, the cardinal series can’t adequately take account of
the part of the white electronic noise that falls out of its band
width. Thus, the coefficients A0opt and likewise calculated signal



Fig. 2. Two-dimensional charts of the cardinal series filter exactitude js(0) � 1j
calculated as a function of X0 and X00 for the computer-simulated data sets
modelled as noise-free samples of the functions of (A) Eq. (28) and (B) (29), where
x1 = 2p, x2 = p, a = 0.6, b = 0.4 and to = 1. The functions were sampled in an interval
[t1,tN], tI = �1.4, tN = 1.4 at a normalised sampling frequency X/Xo = 100. The
calculations were carried out for 27 and 25 values of X0/Xo and X00/Xo incremen-
tally varied from 0.8 to 2.1 and from 0.8 to 2.0, respectively. Ten additional cardinal
sine functions with maxima beyond either boundary of the sampling area were
provided for a further possible improvement in the filter performance. (C) Three-
dimensional diagram of the noise reduction r0/r at t = 0 that can be achieved by
applying the filter to the data sets described above.
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s(t) are expected to hold all the information about the raw data
samples of the band-limited signal x(t). On the contrary, the infor-
mation about electronic noise at frequencies higher than X0/2 will
Fig. 3. Two-dimensional charts of the cardinal series filter exactitude js(0) � 1j
calculated as a function of R and X00 for the data sets of (A) Eq. (28) and (B) (29),
respectively. The calculations were carried out for 56 and 90 values of R and X00/Xo

incrementally varied from �5 to 50 and from 0.5 to 5, respectively. (C) Three-
dimensional diagram of the noise reduction r0/r at t = 0 that can be achieved by
applying the filter.



Fig. 4. (A) real part of an FID signal acquired as described in Section 5 before (dashed line) and after (solid line) it was processed with a Bruker spectrometer in-built digital
filter with a pass band of 1 kHz; (B) uniformly phase-corrected spectrum (dashed line) of the raw signal and uniformly and linearly phase-corrected spectrum (solid line) of
the filtered signal of Fig. 2A; (C) real part of an FID signal before (dashed line) and after (solid line) it was processed with a digital Lanczos filter with a pass band of 333 Hz; (D)
uniformly phase-corrected spectrum (dashed line) of the raw signal and uniformly and linearly phase-corrected spectrum (solid line) of the signal processed with the Lanczos
filter; FT (also dashed line) in arbitrary units of the Lanczos kernel. The spectra appear identical to each other.

Fig. 5. Signals modelled as a sinc2(pt/to) function defined for (A) �5 6 t/to 6 5, (B) �0.5 6 t/to 6 0.5 and (C) �0.1 6 t/to 6 0.1 and impaired with computer-simulated white
Gaussian noise of standard deviation 0.02 before (dotted line) and after Lanczos (continuous line) they were processed with a Lanczos filter. The pass band width of the filter
was set equal to the band width Xo = 4p/to of the signals to filter.

S. Rodts et al. / Journal of Magnetic Resonance 204 (2010) 64–75 69



Fig. 6. Two-dimensional charts of the js(0) � 1j values calculated as a function of
the lower t1 and upper tN boundaries of the sampling area for the data sets of (A) Eq.
(28) and (B) (29), respectively. The calculations were carried out for 51 values of
either parameter independently and incrementally varied from�5to to 0 and from 0
to 5to, respectively. (C) Three-dimensional diagram of the noise reduction r0/r at
t = 0 that can be achieved by applying the filter.
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be largely lost, making of the cardinal series an excellent low pass
filter for NMR-signals.

3. Results and discussion

3.1. Setting the cardinal series filter parameters

Exactitude, precision and calculation efficiency of the ‘cardinal
series filter’ depends on the choice of values of the parameters
X0, X00, Minf and Msup in Eq. (16). To derive sensible rules for setting
these values, we optimised them by processing data sets modelled
as N noise-free samples of two band-limited functions with a band
width Xo = 4p/to

xðtÞ ¼ sinc2 p t
to

� �
ð28Þ

xðtÞ ¼ a � cosðx1tÞþb � cosðx2tÞ; with x1 ¼ 2p=to;x2 ¼p=to; a¼ 0:6 and b¼ 0:4
ð29Þ

where the constant unit to was set to one in either function. The
functions have shapes somewhat reminiscent of spin echoes with
a maximum at t = 0. The spectrum of the function of Eq. (28) can
be viewed as a broad line centred at x = 0, while that of the function
of Eq. (29) as four infinitely narrow lines at x = ± x1 and x = ± x2.
Such spectra seam to us to correspond to two distinct situations
that most often occur in practice. The functions were sampled in
an interval t1 6 t = tn 6 tN, t1 = �1.4to, tN = 1.4to at a sampling fre-
quency X set to 100 times the band width Xo, which corresponds
to a oversampled truncated signal and would be a usual situation
in one-dimensional experiments or in the direct dimension of mul-
ti-dimensional experiments.

Analysis of the filter parameters on an exponentially damped
harmonically oscillating function (not shown here) proved less
insightful, as such FID-like signal is not band-limited, strictly
speaking. Nevertheless, the filter with the parameters optimised
on the echo-like signals of Eqs. 28 and 29 will perform beautifully
(see below) when applied to the FID-like signals.

First, we examined the exactitude js(0) � x(0)j—also known as
‘aliasing error’ [22,23]—with which the filter calculates the signal
at its maximum x(0) = 1 as well as the noise reduction r0/r that
can be thus achieved, had the samples been noise-impaired.
Fig. 2A and B show two-dimensional charts of the js(0) � 1j values
calculated for the data sets mentioned above as a function of X0

and X00. The calculations were carried out for 27 and 25 values of
X0/Xo and X00/Xo incrementally varied from 0.8 to 2.1 and from
0.8 to 2.0, respectively. We also provided (see Eq. 13) 10 additional
cardinal sine functions whose maxima appear beyond either
boundary of the sampling area, i.e. sm satisfied

t1 � 10
p
X00
6 sm 6 tN þ 10

p
X00

ð30Þ

for a further possible improvement in the filter performance.
Clearly, the method fails when X0 < Xo and 2X00 < Xo + X0, as then
the Nyquist criterion is not met. Elsewhere, the filter introduced a
bias of order 10�6 to 10�7, which is rather marginal compared to
the accuracy with which NMR signals can be collected. We believe
that the bias may correspond to a round off error in M singular val-
ues that occurs when the matrix product MtM in Eq. (21) is explic-
itly calculated in a 64-bit double precision format. Certain
roughness of the surfaces in Fig. 2A and B, as well as those in
Fig. 3A and B and Fig. 6A and B (see below) was found to depend
on the form of the signal to be processed and is, we reckon, irrele-
vant to the subject discussed herein. Fig. 2C shows a two-dimen-
sional chart of the noise reduction factor r0/r at t = 0 as a
function of X0 and X00. Unlike the exactitude, this factor depends
on the series constant parameters only and is independent of
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sampled signals (see Eq. 26). The noise reduction proved quite
insensitive to X00 and, as it could be expected, decreases monoto-
nously when X0 diminishes. Similar results were obtained when
the model functions of Eqs. 28 and 29 were further truncated. This
allowed us to infer that X0 and X00 can be reasonably set equal to
one another and just over the band width Xo of a signal to filter.
In what will follow X00 = X0.

Second, given poor performance of cardinal series in extrapolat-
ing functions, the interval ½sMinf

; sMsup �where cardinal sine functions
reach their maximum should encompass the sampling area [t1, tN],
i.e.

sMinf
; sMsup

h i
¼ t1 � R

2p
X00

; tN þ R
2p
X00

� �
ð31Þ

where an integer R stands for the number of cardinal sine functions,
to include in the series, with maxima beyond each of the sampling
area boundaries. The number R to optimise is related to the param-
eters Minf and Msup as

Minf ¼ int
X00t1

2p

� �
� R and Msup ¼ int

X00tN

2p

� �
þ R ð32Þ

Fig. 3A and B show two-dimensional charts of the js(0) � 1j values
calculated for the data sets mentioned above as a function of R
and X00 = X0. The calculations were carried out for 56 and 90 values
of R and X00/Xo incrementally varied from �5 to 50 and from 0.5 to
5, respectively. When the Nyquist criterion X00 > Xo is fulfilled, vary-
ing X00 any further has little impact on the exactitude with which
the filter predicts the value of the signal at its maximum. From
now on, we set X00 = X0 = 1.1Xo. The exactitude proved reasonable
for all explored positive values of R and was particularly good for
R > 4, where the filter introduced, what we believe to be, a round
off error of order 10�7. The noise reduction at t = 0 (see Fig. 3C)
proved almost independent of R and decreased monotonously with
decreasing X00. To be on the safe side without compromising on
computational efficiency, we decided to set R = 6 hereafter.

3.2. Tolerance of the cardinal series filter towards signal truncations

Performance of the convolution filter will depend crucially on
the period T = tN � t1 during which the signal is sampled. When it
becomes too short to allow for an adequate spectral resolution
dx = 2p/T of the signal, the filter distorts it very badly. This makes
the convolution filter unsuitable for processing truncated signals.
Fig. 7. (A) Real part of an FID signal acquired as described in Section 5 before (dashed line
of 333 Hz; (B) uniformly phase-corrected spectra of the raw (dashed line) and filtered (s
cardinal sine function. The raw and filtered signals coincide perfectly in either domain.
Clearly, an infinitely long acquisition interval �1 < t <1, as re-
quired by Eq. (6), cannot be realised in practice. Nevertheless, dis-
tortions introduced by the filter will be negligible when the signal
is measured during such an interval that it equals zero at both of
the acquisition interval boundaries, which will often be experi-
mentally impossible. FID signals reach their maximum at the lower
boundary of the acquisition interval and often cannot be measured
long enough for nuclear spin relaxation to reduce them to zero. Nor
can echoes always be recorded between two sequential moments
at which spin magnetisation is refocused. In such situations, the fil-
ter will distort the signal everywhere, distortions being particularly
severe near the discontinuities of the signal owing to the trunca-
tion. Neither artificial setting of values of the signal x(t) to zero out-
side the acquisition interval [t1,tN] nor treating the signal as a
periodic function with a period equal to the acquisition interval
can alleviate the truncation problem.

Application of a digital filter with a pass band of 1 kHz to a raw
FID signal (dashed line in Fig. 4A) of ethanol first passed trough an
analogue filter with a pass band of 100 kHz and oversampled at the
frequency of 100 kHz gives a signal (solid line in Fig. 4A) down-
sampled to 1 kHz, distorted near t1 = 0 and shifted as a whole with
respect to the raw signal along the time axis. A frequency-indepen-
dent and linear, to compensate for the time shift, phase correction
and FT of the filtered signal gives a spectrum (solid line in Fig. 4B)
similar to the uniformly phase-corrected spectrum of the raw sig-
nal (dashed line in Fig. 4B), though, with a twisted base line.

Fig. 4C shows the raw signal of Fig. 4A extended by setting its
value to zero outside the interval [0, tN] before (dashed line) and
after (solid line) it was processed with a convolution filter with
the Lanczos kernel (see also Fig. 1C and D)

fLanðtÞ ¼
X

2p
sinc

X
2

t
� �

sinc
X
6

t
� �

; ð33Þ

which has been recognised by many as a filter providing the best
compromise between filtering performance and limiting trunca-
tion-related distortions [10,11], and pass band width X/3p set to
333 Hz. The convolution filters tends to smooth the discontinuity
of the signal at t = 0 and by doing so distorts the signal, as can
be seen in Fig. 4C, for time close to zero. The uniformly phase-cor-
rected FT of these signals, on the other hand, appear identical (see
Fig. 4D); and base line is now perfect. Thus, the Lanczos filter
proves perfectly adequate for processing truncated signals for
spectroscopic applications. It leaves, though, much to be desired
when truncated signals are to analyse in the time domain. Success
) and after (solid line) it was processed by the cardinal series filter with a pass band
olid line) signals of Fig. 7A, FT (also dotted line) in arbitrary units of the truncated
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in the application of a convolution filter to a band-limited signal
depends crucially on its spectral resolution dx. To ensure this,
the signal must be sampled long enough for tN � t1� 2p/Xo. Low-
ering the resolution worsens greatly the performance of the filter
Fig. 8. Signals of Fig. 5 before (dotted line) and after (continuous line) they were process
band width Xo = 4p/to of the signals.

Fig. 9. (A) Noise-free FID-like signal modelled as the function in Eq. (35) before (dashed l
FID-like signal modelled as the function in Eq. (35) before (dashed line) and after (cont
difference between the noise-free FID-like signal modelled as the function in Eq. (35) an
The pass band width of both filters was set to 100 Hz.
and it fails utterly when applied to truncated signals, i.e. when
tN � t1 6 2p/Xo.

To illustrate this, we applied a Lanczos convolution filter to sig-
nals (dashed line in Fig. 5A–C), modelled as a function
ed with a cardinal series filter. The pass band width of the filter was set equal to the

ine) and after (continuous line) it was processed with a Lanczos filter. (B) Noise-free
inuous line) it was processed with a cardinal series filter; (C) absolute value of the
d the output signal of the Lanczos (dotted line) and cardinal series (solid line) filter.
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xðtÞ ¼ sinc2 p t
to

� �
; where to stands for an arbitrary time unit;

ð34Þ

sampled at regular intervals dt = to/100 within (a) �5to 6 t 6 5to, (b)
�0.5to 6 t 6 0.5to and (c) �0.1to 6 t 6 0.1to and impaired with com-
puter-simulated white normally distributed noise of standard devi-
ation 0.02. The filter pass band width was set equal to the band
width Xo = 4p/to of the signals to filter. Applying the filter to the sig-
nal for which tN � t1 = 20 � (2p/Xo) results in a significantly cleaner
signal (continuous line in Fig. 5A) that preserves all the features of
the original data set. Applied to the truncated signal of Fig. 5B, for
which tN � t1 = 2 � (2p/Xo), the filter gives a cleaner signal (continu-
ous line in Fig. 5B) that differs, however, markedly from the original
data set.

Applying the same filter to the even more truncated signal for
which tN � t1 = 0.4 � (2p/Xo), gives a clean, albeit completely disfig-
ured signal (continuous line in Fig. 5C).

Convolution filters with fancier spectra, e.g. cardinal sine or
Gaussian functions, do hardly better [24]. The filter based on using
truncated cardinal series, contrariwise, will prove (see Fig. 8) suit-
able for processing truncated signals.

Once all the parameters were set as described above, i.e.
X0 = X00 = 1.1Xo and R = 6, we examined how the performance
Fig. 11. (A) Uniformly phase-corrected FT of the noise-free signal of Fig. 9A; (B) uniform
filter; (C) uniformly phase-corrected FT of the noise-free signal of Fig. 9A processed wit
dotted line in (B) and (C) indicates the FT in arbitrary units of the Lanczos kernel and c

Fig. 10. (A) Uniformly phase-corrected FT of the FID-like signal of Fig. 9A impaired with c
(B) uniformly phase-corrected FT of the noise-impaired signal of Fig. 9A processed with
Fig. 9A processed with a cardinal series filter. The pass band width of both filters was se
Lanczos kernel and cardinal series in Eq. (13), respectively.
of the filter is affected by the size of data sets. Fig. 6A and B
show two-dimensional charts of the js(0) � 1j values calculated
for the data sets of Eqs. 28 and 29 as a function of the lower
t1 and upper tN boundaries of the sampling area. The calculations
were carried out for 51 values of either parameter independently
and incrementally varied from �5to to 0 and from 0 to 5to,
respectively. Whatever the size of data sets, the inexactitude is
under 10�6. Such an inexactitude can be safely ignored when
it deals with processing NMR data. Fig. 6C shows a three-dimen-
sional diagram of the noise reduction. When both �t1 and tN in-
crease, the noise reduction r0/r tends quickly to 0.105, which
corresponds to the value predicted by Eq. (11) for the convolu-
tion filter with the cardinal sine kernel. It should be pointed
out that the expression on the right hand side in Eq. (11) gives
the exact value of the signal-to-noise gain factor r/r0 for signals
determined on infinite supports and stands for a lower bound of
its best achievable limit when it deals with truncated signals.
When one or both of t1 and tN tend to zero, the noise reduction
is still fairly good.

To further contrast the two types of filter, we applied a cardinal
series filter to the experimentally acquired proton FID signal of
ethanol (see also Fig. 4A). The input and output, shown in
Fig. 7A, appear identical to one another everywhere along the time
axis and at t = 0, where the convolution filter suffered a major
ly phase-corrected FT of the noise-free signal of Fig. 9A processed with a Lanczos
h a cardinal series filter. The pass band width of both filters was set to 100 Hz. The
ardinal series in Eq. (13), respectively.

omputer-simulated white normally distributed noise with 0.05 standard deviation;
a Lanczos filter; (C) uniformly phase-corrected FT of the noise-impaired signal of

t to 100 Hz. The dotted line in (B) and (C) indicates the FT in arbitrary units of the
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set-back, in particular. Thus the cardinal series filter proves much
more tolerant to signal discontinuities. And so do their FT, shown
with a dashed and continuous line, respectively, in Fig. 7B.

We also applied a cardinal series filter to the computer-simu-
lated truncated echo-like data sets of Fig. 5A–C. Yet again not only
do the filter output data sets, shown in Fig. 8A–C respectively, have
higher signal-to-noise ratios but also preserve all the features of
the original signal for all three input data sets.

To investigate in more detail how the cardinal series filter per-
forms being applied to signals that can only approximately be
viewed as band-limited, we applied it to a data set modelled as
an exponentially damped simple harmonic oscillation
1000
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Fig. 12. Signal amplitudes, before (bigger grey squares) and after (smaller black
diamonds) an application of the cardinal series filter to echoes acquired in CPMG-
experiments on (A) 50-, (B) 5- and (C) 0.5-gramme samples prepared as described
in part 5.
with a angular frequency x/2p = 10 Hz and decay constant
T2 = 100 ms sampled in an interval [t1, tN] t1 = 0, tN = 400 ms at
a sampling frequency 1 kHz. This signal was processed with the
Lanczos (Fig. 9A) and cardinal series (Fig. 9B) filter with pass
band width set to 100 Hz. The FT of such a noise-free FIDlike sig-
nal is an, infinitely wide, Lorentzian. In practice, though, only a
very limited a part of the whole spectrum will be of interest.
Fig. 9C shows the absolute value of the difference between the
input and output signals of the Lanczos (dotted line) and cardinal
series (solid line) filter. The error introduced by the Lanczos filter
varies greatly as a function of time, is particularly large—about 40
per cent—at t = 0 and stays less than 10�3–10�4 for a major of the
rest of the sampling interval. The error introduced by the cardinal
series filter is, contrariwise, rather uniform and is less than 10�6–
10�7 for the whole sampling interval. The precision of the cardi-
nal series filter is superior not only to that of the Lanczos filter
but also to the best mathematical estimations yet reported
[22,23] of the error introduced in approximating the signal with
truncated cardinal series; and may be accounted for by the fact
that the coefficients am were left unspecified and sought for to
only ensure the best possible agreement between the cardinal
series and signal to filter x(t), rather than identifying them with
the signal samples x(sm).

Computer-simulated white normally distributed noise of stan-
dard deviation 0.05 was added to the signal (dashed line of
Fig. 9A), whose FT is shown in Fig. 10A, and processed with the
Lanczos and cardinal series filter. The FT of the output signals of
either filter, shown in Fig. 10B and C, respectively, appear identical
to the input signal within the pass band width of the filters. Thus
both types of filter preserve the noise-impaired signal within their
pass band, i.e. within jx/2pj 6 50 Hz. The Lanczos filter has a fine
roll-off and, thus, only attenuates noise within 50 Hz 6 jx/
2pj 6 100 Hz. The cardinal series filter, contrariwise, appears, at
least at first sight, to have an infinitely narrow roll-off and elimi-
nates noise whose frequencies exceed the spectral band width of
the truncated cardinal sine function that constitute the series of
Eq. (13), i.e. jx/2pj 6 50 Hz.; and thus performs very much as
would the convolution filter with cardinal sine kernel and bass
band width of 100 Hz, should it have been applicable to truncated
signals.

Nevertheless, a closer look at the processed noise-free signals,
shown in Fig. 11B and C, respectively, reveals a subtle difference
between them. While the output signal of the Lanczos filter has
a perfectly flat base line outside the interval jx/2pj 6 100 Hz,
that of the cardinal series filter preserved the wings of the input
signal, shown in Fig. 11A, in the intervals jx/2pjP 50 Hz. This
suggests to us that high frequency noise in Fig. 10C was indeed
removed whilst a true high frequency components of the
signal—resulted from its truncation and essential for a proper
description of the signal at t = 0 in the time domain—was pre-
served by the filter.
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3.3. Application of the cardinal series filter for processing experimental
NMR signals

The cardinal series filter was applied to data sets obtained in
CPMG experiments on a proton system in 50, 5 and 0.5 gramme
samples of a blend described in Experimental to rectify the ampli-
tude of spin echoes summits—the only quantity of interest that
could be extracted from the signal in the time domain. The band
width Xo/2p of the spectrum was found to be about 300 Hz,
whereas the narrowest analogue filter had a pass band width Xf/
2p = 100 kHz. The acquisition interval was deliberately set to
3 ms, i.e. tN � t1 = 0.9 � (2p/Xo), to truncate the signal. The ADC
sampling frequency was set to 100 kHz, to oversample it.

Fig. 12A–C show the experimentally measured (big grey
squares) and filtered (small black squares) amplitudes of the spin
echoes maxima for the three above mentioned samples, respec-
tively, which corresponded to the signal-to-noise ratio varying
from decent, in Fig. 12A, to quite poor, in Fig. 12C.

In particular, Fig. 12C shows that the signal-to-noise ratio could
be raised from 10 for the experimentally determined raw spin ech-
oes amplitudes (big grey squares) to about 150 for those (small
black squares) that were obtained by filtering the entire data set
as suggested above. This improvement is close to its theoretical
maximum of 18.3 (see Eq. 11) under present experimental condi-
tions (see in Section 5).

4. Conclusions

We proposed a digital low pass filter for truncated band-limited
NMR signals. It consists in fitting raw data in the time domain with
a finite series of truncated cardinal sine functions. In contrast with
those widely used so far, our filter is essentially model-free, re-
quires no prior knowledge about the system under study and pre-
serves all the features of the signal in both the time and frequency
domain.

Sensible rules were derived for setting the parameters of the
filter.

The filter is applied after acquisition of the oversampled signal
was completed, thus requiring more random access memory
(RAM) than causal filters. Nevertheless, its performance is such
that the acquisition interval can deliberately be shortened, should
there be shortage of RAM.

5. Experimental

All numerical simulations, calculations and data-processing
algorithms were coded in Fortran 95 programming language
[25,26]. Where necessary, matrices were inverted using LDLT
decomposition.

All NMR spectra were acquired at a vertical wide-bore Bruker
24/80 Avance DBX spectrometer equipped with a 20 cm birdcage
RF coil and operating at 0.5 Tesla. One-dimensional proton NMR
signals of a sample of ethanol were registered after a single 90�
excitation pulse. The water proton CPMG experiments were carried
out on 50, 5 and 0.5 gramme samples of an emulsion (a blend of
CaOH, water and dodecane). In each two-minute experiment 300
complex data points were acquired for each of (odd) 256 collected
of 512 generated echoes. The band width Xo/2p of the echoes was
about 300 Hz. The ADC sampling frequency X/2p and analogue fil-
ter pass band width Xf/2p were both set to 100 kHz.
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